A DECISION MODEL FOR DETERMINING PUBLIC LOCATIONS SUITABLE FOR AUTOMATED EXTERNAL DEFIBRILLATOR (AED) DEPLOYMENT: A CASE STUDY IN CITY OF VALENCIA

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 13, 2017
Esin Ekmekci Pablo Aragones-Beltran Rafael Rodriguez Ilker Topcu

Abstract

Automated external defibrillators (AED) offered a new perspective on resuscitation by enabling first-responders to deliver life-saving defibrillation within the critical first minutes after sudden cardiac arrest (SCA). This raised the question about where to place the AEDs. This study aims to provide a novel approach to the problem and to serve as a guideline for health policy decision makers in future projects. We used the Analytic Hierarchy Process (AHP) to form a decision model with four main criteria, and six sub-criteria. “Response time†was the most important criterion with an importance of 65.07%. Locations with the highest scores were a sports center, two stadiums, the central market, and the central bus station. A simple ranking of the alternatives would not be sufficient for the purpose of this study because the aim is to offer a guide for selecting locations for deploying AEDs rather than ranking the alternatives according to their suitability. Therefore, we formed priority groups. Sensitivity analysis showed that especially the alternatives in the first-priority group are not highly sensitive to changes, emphasizing their importance. 

https://doi.org/10.13033/ijahp.v9i2.492

 

How to Cite

Ekmekci, E., Aragones-Beltran, P., Rodriguez, R., & Topcu, I. (2017). A DECISION MODEL FOR DETERMINING PUBLIC LOCATIONS SUITABLE FOR AUTOMATED EXTERNAL DEFIBRILLATOR (AED) DEPLOYMENT: A CASE STUDY IN CITY OF VALENCIA. International Journal of the Analytic Hierarchy Process, 9(2). https://doi.org/10.13033/ijahp.v9i2.492

Downloads

Download data is not yet available.
Abstract 1560 | PDF Downloads 286

##plugins.themes.bootstrap3.article.details##

Keywords

automated external defibrillator (AED), public access defibrillation (PAD), sudden cardiac arrest (SCA)

References
Aragonés-Beltrán P., Chaparro-González P., Pastor-Ferrando J.P., Pla-Rubio A. (2014). An AHP (Analytic hierarchy process)/ANP (Analytic network process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects. Energy, 66, 222-38. Doi: https://doi.org/10.1016/j.energy.2013.12.016

Balady G.J., Chaitman B., Foster C., Froelicher E., Gordon N., Van Camp S. (2002). Automated external defibrillators in health/fitness facilities: supplement to the AHA/ACSM recommendations for cardiovascular screening, staffing, and emergency policies at health/fitness facilities. Circulation, 105, 1147-50. Doi: https://doi.org/10.1161/hc0902.105998

Becker L., Eisenberg M., Fahrenbruch C., Cobb L. (1999). Public locations of cardiac arrest: implications for public access defibrillation. Circulation, 97, 2106-9. Doi: https://doi.org/10.1161/01.CIR.97.21.2106

Berger S. (2009). Automated external defibrillators utility, rational, and controversies. PACE, 32, 75-59. Doi: 10.1111/j.1540-8159.2009.02390.x

Brooks S.C., Hsu J.H., Tang S.K., Jeyakumar R., Chan T.C.Y. (2013). Determining risk for out-of-hospital cardiac arrest by location type in a Canadian urban setting to guide future public access defibrillator placement. Annals of Emergency Medicinen 61, 530-8. Doi: http://dx.doi.org/10.1016/j.annemergmed.2012.10.037

Capucci A., Aschieri D., Guerra F., Pelizzoni V., Nani S., Villani G.Q., et al. (2016). Community-based automated external defibrillator only resuscitation for out-of-hospital cardiac arrest patients. American Heart Journal, 172, 192-200. Doi: http://dx.doi.org/10.1016/j.ahj.2015.10.018

Chan T.C.Y., Li H., Lebovic G., Tang S.K., Chan J.Y.T., Cheng H.C.K., et al. (2013). Identifying locations for public access defibrillators using mathematical optimization. Circulation, 127, 1801-9. Doi: https://doi.org/10.1161/CIRCULATIONAHA.113.001953

Cho Y., Je S., Lim T., Kang H. (2012). Safe campus using wireless managed automated external defibrillator (AED). Resuscitation, 83, e183-4. Doi: http://dx.doi.org/10.1016/j.resuscitation.2012.03.038

Colquhoun M.C., Chamberlain D.A., Newcombe R.G., Harris R., Harris S., Peel K., et al. (2008). A national scheme for public access defibrillation in England and Wales: early results. Resuscitation, 78, 275-80. Doi:http://dx.doi.org/10.1016/j.resuscitation.2008.03.226

Cram P., Vijan S., Fendrick A.M. (2003). Cost-effectiveness of automated external defibrillator deployment in selected public locations. Journal of General Internal Medicine, 18, 745-54. Doi: https://doi.org/10.1046/j.1525-1497.2003.21139.x

Eckstein M. (2012). The Los Angeles public access defibrillation (PAD) program: ten years after. Resuscitation, 83, 1411-2. Doi: http://dx.doi.org/10.1016/j.resuscitation.2012.03.029

Folke F., Lippert F.K., Nielsen S.L., Gislason G.H., Hansen M.L., Schramm T.K., et al. (2009). Location of cardiac arrest in a city center: Strategic placement of automated external defibrillators in public locations. Circulation, 120, 510-29.
Doi: https://doi.org/10.1161/CIRCULATIONAHA.108.843755

Gianotto-Oliveira R., Gonzalez M.M., Vianna C.B., Alves M.M., Timerman S., Filho R.K., et al. (2015). Survival after ventricular fibrillation cardiac arrest in the Sao Paulo metropolitan subway system: first successful targeted automated external defibrillator (AED) program in Latin America. Journal of the American Heart Association, 4, 185-93.
Doi: https://doi.org/10.1161/JAHA.115.002185

Gilchrist S., Schieb L., Mukhtar Q., Valderrama S., Yoon P., Sasson C., et al. (2010). A summary of public access defibrillation laws, United States, 2010. Preventing Chronic Disease, 9, 110196. Doi: http://dx.doi.org/10.5888/pcd9.110196

Huig I.C., Boonstra L., Gerritsen P.C., Hoeks S.E. (2014). The availability, condition and employability of automated external defibrillators in large city centers in the Netherlands. Resuscitation, 85, 1324-9. Doi: http://dx.doi.org/10.1016/j.resuscitation.2014.05.024

Imai K., Fujii A., Nabeshima K. (2008). AED location in public spaces: a case study in Ueno Park using Voronoi diagrams with obstacles. Journal of Asian Architecture and Buidling Engineering, 7, 271-8. Doi: http://doi.org/10.3130/jaabe.7.271

Lubin J., Chung S.S., Williams K. (2004). An assessment of public attitudes toward automated external defibrillators. Resuscitation, 62, 43-7. Doi: http://dx.doi.org/10.1016/j.resuscitation.2004.02.006

Motyka T.M., Winslow J.E., Newton K., Brice J.H. (2005). Method for determining automatic external defibrillator need at mass gatherings. Resuscitation, 65, 309-14. Doi: http://dx.doi.org/10.1016/j.resuscitation.2004.09.016

Muraoka H., Ohishi Y., Hazui H., Negoro N., Murai M., Kawakami M., et al. (2006). Location of out-of-hospital cardiac arrests in Takatsuki city – where should automated external defibrillator be placed? Circulation, 70, 827-31. Doi: http://doi.org/10.1253/circj.70.827

Myerburg R.J., Estes III N.A.M., Fontaine J.M., Link M.S., Zipes D.P. (2005) Task force 10: Automated external defibrillators. Journal of American College of Cardiology, 45, 1369-71. Doi: https://doi.org/10.1016/j.jacc.2005.02.017

Myers D.C., Mohite M. (2009). Locating automated external defibrillators in a university community. Journal of the Operational Research Society, 60, 869-72. Doi: https://doi.org/10.1057/palgrave.jors.2602615

Nichol G., Huszti E., Birnbaum A., Mahoney B., Weisfeldt M., Travers A., et al. (2009). Cost-effectiveness of lay responder defibrillation for out-of-hospital cardiac arrest. Annals of Emergency Medicine, 54, 226-35. Doi: http://dx.doi.org/10.1016/j.annemergmed.2009.01.021

Nielsen A.M., Folke F., Lippert F.K., Rasmussen L.S. (2013). Use and benefits of public access defibrillation in a nation-wide network. Resuscitation, 84, 430-4. Doi: http://dx.doi.org/10.1016/j.resuscitation.2012.11.008

Nolan J.P., Soar J., Zideman D.A., Biarent D., Bossaert L.L., Deakin C., et al. (2010). European Resuscitation Council guidelines for resuscitation 2010 section 1: executive summary. Resuscitation, 81, 1219-76. Doi: http://dx.doi.org/10.1016/j.resuscitation.2010.08.021

Norton K.I., Norton L.H. (2008). Automated external defibrillators in the Australian fitness industry. Journal of Science and Medicine in Sport, 11, 86-9. DOI: http://dx.doi.org/10.1016/j.jsams.2007.12.008

Page R.L., Husain S., White L.Y., Rea T.D., Fahrenbruch C., Yin L., et al. (2013). Cardiac arrest at exercise facilities – Implications for placement of automated external defibrillators. Journal of American College of Cardiology, 62, 2102-9. Doi: https://doi.org/10.1016/j.jacc.2013.06.048

Rauner M., Bajmoczy N. (2003). How many AEDs in which region? An economic decision model for the Austrian Red Cross. European Journal of Operational Research, 150, 3-18. Doi: https://doi.org/10.1016/S0377-2217(02)00777-4

Saaty T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234-81. Doi: https://doi.org/10.1016/0022-2496(77)90033-5

Saaty T.L. (2006). Rank from comparisons and from ratings in the analytic hierarchy/network processes. European Journal of Operational Research, 168, 557-70. Doi: https://doi.org/10.1016/j.ejor.2004.04.032

Saaty T.L., Vargas L.G. (2012). Models, methods, concepts & applications of the Analytic Hierarchy Process. New York: Springer Science+Business Media.

Sasaki M., Iwami T., Kitamura T., Nomoto S., Nishiyama C., Sakai T., et al. (2011). Incidence and outcome of out-of-hospital cardiac arrest with public access defibrillation, Circulation, 75, 2821-26. Doi: http://doi.org/10.1253/circj.CJ-11-0316

Schneider L., Sterz F., Haugk M., Eisenburger P., Scheinecker W., Kliegel A., et al. (2004). CPR courses and semi-automatic defibrillators – life saving in cardiac arrest?. Resuscitation, 63, 295-303. Doi: http://dx.doi.org/10.1016/j.resuscitation.2004.06.005

Siddiq A.A., Brooks S.C., Chan T.C.Y. (2013). Modeling the impact of public access defibrillator range on public location cardiac arrest coverage. Resuscitation, 84, 904-9. Doi: http://dx.doi.org/10.1016/j.resuscitation.2012.11.019

Swor R., Grace H., McGovern H., Weiner M., Walton E. (2013). Cardiac arrest in schools: assessing use of automated external defibrillators (AED) on school campuses. Resuscitation, 84, 426-9. Doi: http://dx.doi.org/10.1016/j.resuscitation.2012.09.014

Timmons S., Crosbie B. (2014). Why do organisations implement automated external defibrillators?. Health, Risk & Society, 16, 355-69.
Doi: http://dx.doi.org/10.1080/13698575.2014.926314

Topcu, Y.I. (2000). Integrated decision aid model for multiattribute problem solving, unpublished Ph.D. Thesis, Istanbul Technical University, Institute of Science and Technology, Istanbul.

Tsai Y., Ko P.C., Huang C., Wen T. (2012). Optimizing locations for the installation of automated external defibrillators (AEDs) in urban public streets through the use of spatial and temporal weighting schemes. Applied Geography, 35, 394-404.
Doi: https://doi.org/10.1016/j.apgeog.2012.09.002

Watson A.M., Kannankeril P.J., Meredith M. (2013). Emergency response planning and sudden cardiac arrests in high schools after automated external defibrillator legislation. Journal of Pediatrics, 163, 1624-7. Doi: http://dx.doi.org/10.1016/j.jpeds.2013.07.024

Whitney-Cashio P., Sartin M., Brady W.J., Williamson K., Alibertis K., Somers G., et al. (2012). The introduction of public access defibrillation to a university community: The University of Virginia public access defibrillation program. American Journal of Emergency Medicine, 30, e1-8. Doi: http://dx.doi.org/10.1016/j.ajem.2011.07.005

Wu S., Lee A., Tah J.H.M., Aouad G. (2007). The use of a multi-attribute tool for evaluating accessibility in buildings: the AHP approach. Facilities, 25, 375-89.
Doi: https://doi.org/10.1108/02632770710772478
Section
Articles