Open Journal Systems


Esin Ekmekci, Pablo Aragonés-Beltrán, Rafael Rodríguez de Sanabria Gil, Ilker Topcu


Automated external defibrillators (AED) offered a new perspective on resuscitation by enabling first-responders to deliver life-saving defibrillation within the critical first minutes after sudden cardiac arrest (SCA). This raised the question about where to place the AEDs. This study aims to provide a novel approach to the problem and to serve as a guideline for health policy decision makers in future projects. We used the Analytic Hierarchy Process (AHP) to form a decision model with four main criteria, and six sub-criteria. “Response time” was the most important criterion with an importance of 65.07%. Locations with the highest scores were a sports center, two stadiums, the central market, and the central bus station. A simple ranking of the alternatives would not be sufficient for the purpose of this study because the aim is to offer a guide for selecting locations for deploying AEDs rather than ranking the alternatives according to their suitability. Therefore, we formed priority groups. Sensitivity analysis showed that especially the alternatives in the first-priority group are not highly sensitive to changes, emphasizing their importance.


automated external defibrillator (AED); public access defibrillation (PAD); sudden cardiac arrest (SCA)

Full Text:



Aragonés-Beltrán P., Chaparro-González P., Pastor-Ferrando J.P., Pla-Rubio A. (2014). An AHP (Analytic hierarchy process)/ANP (Analytic network process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects. Energy, 66, 222-38. Doi:

Balady G.J., Chaitman B., Foster C., Froelicher E., Gordon N., Van Camp S. (2002). Automated external defibrillators in health/fitness facilities: supplement to the AHA/ACSM recommendations for cardiovascular screening, staffing, and emergency policies at health/fitness facilities. Circulation, 105, 1147-50. Doi:

Becker L., Eisenberg M., Fahrenbruch C., Cobb L. (1999). Public locations of cardiac arrest: implications for public access defibrillation. Circulation, 97, 2106-9. Doi:

Berger S. (2009). Automated external defibrillators utility, rational, and controversies. PACE, 32, 75-59. Doi: 10.1111/j.1540-8159.2009.02390.x

Brooks S.C., Hsu J.H., Tang S.K., Jeyakumar R., Chan T.C.Y. (2013). Determining risk for out-of-hospital cardiac arrest by location type in a Canadian urban setting to guide future public access defibrillator placement. Annals of Emergency Medicinen 61, 530-8. Doi:

Capucci A., Aschieri D., Guerra F., Pelizzoni V., Nani S., Villani G.Q., et al. (2016). Community-based automated external defibrillator only resuscitation for out-of-hospital cardiac arrest patients. American Heart Journal, 172, 192-200. Doi:

Chan T.C.Y., Li H., Lebovic G., Tang S.K., Chan J.Y.T., Cheng H.C.K., et al. (2013). Identifying locations for public access defibrillators using mathematical optimization. Circulation, 127, 1801-9. Doi:

Cho Y., Je S., Lim T., Kang H. (2012). Safe campus using wireless managed automated external defibrillator (AED). Resuscitation, 83, e183-4. Doi:

Colquhoun M.C., Chamberlain D.A., Newcombe R.G., Harris R., Harris S., Peel K., et al. (2008). A national scheme for public access defibrillation in England and Wales: early results. Resuscitation, 78, 275-80. Doi:

Cram P., Vijan S., Fendrick A.M. (2003). Cost-effectiveness of automated external defibrillator deployment in selected public locations. Journal of General Internal Medicine, 18, 745-54. Doi:

Eckstein M. (2012). The Los Angeles public access defibrillation (PAD) program: ten years after. Resuscitation, 83, 1411-2. Doi:

Folke F., Lippert F.K., Nielsen S.L., Gislason G.H., Hansen M.L., Schramm T.K., et al. (2009). Location of cardiac arrest in a city center: Strategic placement of automated external defibrillators in public locations. Circulation, 120, 510-29.


Gianotto-Oliveira R., Gonzalez M.M., Vianna C.B., Alves M.M., Timerman S., Filho R.K., et al. (2015). Survival after ventricular fibrillation cardiac arrest in the Sao Paulo metropolitan subway system: first successful targeted automated external defibrillator (AED) program in Latin America. Journal of the American Heart Association, 4, 185-93.


Gilchrist S., Schieb L., Mukhtar Q., Valderrama S., Yoon P., Sasson C., et al. (2010). A summary of public access defibrillation laws, United States, 2010. Preventing Chronic Disease, 9, 110196. Doi:

Huig I.C., Boonstra L., Gerritsen P.C., Hoeks S.E. (2014). The availability, condition and employability of automated external defibrillators in large city centers in the Netherlands. Resuscitation, 85, 1324-9. Doi:

Imai K., Fujii A., Nabeshima K. (2008). AED location in public spaces: a case study in Ueno Park using Voronoi diagrams with obstacles. Journal of Asian Architecture and Buidling Engineering, 7, 271-8. Doi:

Lubin J., Chung S.S., Williams K. (2004). An assessment of public attitudes toward automated external defibrillators. Resuscitation, 62, 43-7. Doi:

Motyka T.M., Winslow J.E., Newton K., Brice J.H. (2005). Method for determining automatic external defibrillator need at mass gatherings. Resuscitation, 65, 309-14. Doi:

Muraoka H., Ohishi Y., Hazui H., Negoro N., Murai M., Kawakami M., et al. (2006). Location of out-of-hospital cardiac arrests in Takatsuki city – where should automated external defibrillator be placed? Circulation, 70, 827-31. Doi:

Myerburg R.J., Estes III N.A.M., Fontaine J.M., Link M.S., Zipes D.P. (2005) Task force 10: Automated external defibrillators. Journal of American College of Cardiology, 45, 1369-71. Doi:

Myers D.C., Mohite M. (2009). Locating automated external defibrillators in a university community. Journal of the Operational Research Society, 60, 869-72. Doi:

Nichol G., Huszti E., Birnbaum A., Mahoney B., Weisfeldt M., Travers A., et al. (2009). Cost-effectiveness of lay responder defibrillation for out-of-hospital cardiac arrest. Annals of Emergency Medicine, 54, 226-35. Doi:

Nielsen A.M., Folke F., Lippert F.K., Rasmussen L.S. (2013). Use and benefits of public access defibrillation in a nation-wide network. Resuscitation, 84, 430-4. Doi:

Nolan J.P., Soar J., Zideman D.A., Biarent D., Bossaert L.L., Deakin C., et al. (2010). European Resuscitation Council guidelines for resuscitation 2010 section 1: executive summary. Resuscitation, 81, 1219-76. Doi:

Norton K.I., Norton L.H. (2008). Automated external defibrillators in the Australian fitness industry. Journal of Science and Medicine in Sport, 11, 86-9. DOI:

Page R.L., Husain S., White L.Y., Rea T.D., Fahrenbruch C., Yin L., et al. (2013). Cardiac arrest at exercise facilities – Implications for placement of automated external defibrillators. Journal of American College of Cardiology, 62, 2102-9. Doi:

Rauner M., Bajmoczy N. (2003). How many AEDs in which region? An economic decision model for the Austrian Red Cross. European Journal of Operational Research, 150, 3-18. Doi:

Saaty T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234-81. Doi:

Saaty T.L. (2006). Rank from comparisons and from ratings in the analytic hierarchy/network processes. European Journal of Operational Research, 168, 557-70. Doi:

Saaty T.L., Vargas L.G. (2012). Models, methods, concepts & applications of the Analytic Hierarchy Process. New York: Springer Science+Business Media.

Sasaki M., Iwami T., Kitamura T., Nomoto S., Nishiyama C., Sakai T., et al. (2011). Incidence and outcome of out-of-hospital cardiac arrest with public access defibrillation, Circulation, 75, 2821-26. Doi:

Schneider L., Sterz F., Haugk M., Eisenburger P., Scheinecker W., Kliegel A., et al. (2004). CPR courses and semi-automatic defibrillators – life saving in cardiac arrest?. Resuscitation, 63, 295-303. Doi:

Siddiq A.A., Brooks S.C., Chan T.C.Y. (2013). Modeling the impact of public access defibrillator range on public location cardiac arrest coverage. Resuscitation, 84, 904-9. Doi:

Swor R., Grace H., McGovern H., Weiner M., Walton E. (2013). Cardiac arrest in schools: assessing use of automated external defibrillators (AED) on school campuses. Resuscitation, 84, 426-9. Doi:

Timmons S., Crosbie B. (2014). Why do organisations implement automated external defibrillators?. Health, Risk & Society, 16, 355-69.


Topcu, Y.I. (2000). Integrated decision aid model for multiattribute problem solving, unpublished Ph.D. Thesis, Istanbul Technical University, Institute of Science and Technology, Istanbul.

Tsai Y., Ko P.C., Huang C., Wen T. (2012). Optimizing locations for the installation of automated external defibrillators (AEDs) in urban public streets through the use of spatial and temporal weighting schemes. Applied Geography, 35, 394-404.


Watson A.M., Kannankeril P.J., Meredith M. (2013). Emergency response planning and sudden cardiac arrests in high schools after automated external defibrillator legislation. Journal of Pediatrics, 163, 1624-7. Doi:

Whitney-Cashio P., Sartin M., Brady W.J., Williamson K., Alibertis K., Somers G., et al. (2012). The introduction of public access defibrillation to a university community: The University of Virginia public access defibrillation program. American Journal of Emergency Medicine, 30, e1-8. Doi:

Wu S., Lee A., Tah J.H.M., Aouad G. (2007). The use of a multi-attribute tool for evaluating accessibility in buildings: the AHP approach. Facilities, 25, 375-89.