AN INTEGRATED AHP-QFD APPROACH FOR EVALUATING COMPETING TECHNOLOGICAL PROCESSES
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
A major challenge for decision makers in business organization is making appropriate choices among competing high-tech projects. The objective of this paper is to explore a multi-criteria analytical model that can be used for the selection and management of competing manufacturing technologies. The model uses an integrated approach combining Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD) as the basis for selecting a preferred alternative from a set of competing projects. Integration of the two techniques helps to provide a more effective selection process. Two competing chemical processes to produce drugs are used as a case study to demonstrate and validate the AHP – QFD model. The policy makers of pharmaceutical and chemical organizations can use this model as a part of their strategic planning and decision-making process.
How to Cite
Downloads
##plugins.themes.bootstrap3.article.details##
Analytical Hierarchy Process (AHP), Quality Function Deployment (QFD), Multi-criteria decision making, Technology Evaluation, Technology Management
Allama, M. M., Parvez, M. S., Ali, S. M. & Azeem, A. (2012). Using the Analytical Hierarchical Process to prioritise safety management elements in manufacturing in Bangladesh. International Journal of the Analytic Hierarchy Process, 4(2), 104 – 117. doi: http://dx.doi.org/10.13033/ijahp.v4i2.78
Atthirawong, W. and B. MacCarthy, B. (2002). An application to Analytical Hierarchy Process to international location decision-making. The Proceedings of the 7th Cambridge Research Symposium on International Manufacturing, Cambridge, UK: Centre for International Manufacturing.
Bahil, A. T. and Chapman, W. L. (1993). A tutorial on quality function Deployment. Engineering Management Journal, 5(3), 24 – 35. doi: http://dx.doi.org/10.1080/10429247.1993.11414742
Bhattacharya, A., Sarkar, B. and Mukherjee, S. K. (2005). Integrating AHP with QFD for robot selection under requirement perspective. International Journal of Production Research, 43(17), 3671 – 3685. doi: 10.1080/00207540500137217
Cardoso, J. F., Filho, N. C., Miguel, P. A. C. (2015). Application of Quality Function Deployment for the development of an organic product. Food Quality and Preference, 40(A), 180-190. doi: http://dx.doi.org/10.1016/j.foodqual.2014.09.012
Chakraborty, S. and Dey, S. (2007). QFD-based expert system for non-traditional machining processes selection. Expert Systems with Applications, 32(4), 1208-1217. doi: 10.1016/j.eswa.2006.02.010
Cheng, E. W. L. and Li, H. (2001). Information priority-setting for better resource allocation using analytic hierarchy process (AHP). Information Management and Computer Security, 9(2/3), 61-70. doi: http://dx.doi.org/10.1108/09685220110388827
Chuang, P. T. (2001). Combining the Analytic Hierarchy Process and Quality Function Deployment for a location fecision from a requirement perspective. International Journal of Advanced Manufacturing Technology, 18(11), 842-849. doi: 10.1007/s001700170010
Collins, M. J. (2010). Drug discovery at the speed of light. R&D, Available from the internet at < http://www.cem.de/documents/pdf/microwave_synthesis_theory.pdf>, retrieved on April 15, 2010.
Dave, H. K., Desai, K. P., & Raval, H. K. (2012). A decision support system for tool electrode selection for electro discharge machining process using the Analytic Hierarchy Process. International Journal of the Analytic Hierarchy Process, 4(2), 89 - 103. doi: http://dx.doi.org/10.13033/ijahp.v4i2.131
Dolan, J. G. (2000). Involving patients in decisions regarding preventive health interventions using the analytic hierarchy process. Health Expectations, 3(1), 37 – 45. doi: 10.1046/j.1369-6513.2000.00075.x
Ganguly A. and Merino, D. N. (2007). Applying Analytical Hierarchy processing in selection among alternative chemical process. Proceedings of the 28th American Society of Engineering Management (ASEM) National Conference Proceedings, Chattanooga, TN, USA.
Georgakellos, D. A. (2005). Technology selection from alternatives: A scoring model for screening candidates in equipment purchasing. International Journal of Innovation and Technology Management, 2(1), 1-18. doi: 10.1142/S0219877005000393
Hanumaiah, N., Ravi, B. and Mukherjee, N. P. (2006). Rapid hard tooling process selection using QFD-AHP methodology. Journal of Manufacturing Technology Management, 17(3), 332 -350. doi: http://dx.doi.org/10.1108/17410380610648290
Hauser, J. R. and Clausing, D. (1988). The House of Quality. Harvard Business Review, 6(3), 63 – 73.
Ho, W. (2008). Integrated Analytic Hierarchy Process and its applications – a literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004
Huang, C. C., Chu, P.Y. and Chiang, Y. H. (2008). A fuzzy AHP application in government-sponsored R&D project selection. Omega, 36(6), 1038-1052. doi: http://dx.doi.org/10/1016/j.omega.2006.05.003
Hughes, W. R. (2009). A statistical framework for strategic decision making with AHP: Probability assessment and Bayesian revision, Omega, 37(2), 463-470. doi:10.1016/j.omega.2007.07.002
Kappe, C. O. (2003). Microwave-enhanced chemistry – Enabling technology revolutionising organic synthesis and drug discovery, A Report in Business Briefings: Future Drug Discovery 2003, Touch Briefings, 42 – 45.
Kappe, C. O. and Dallinger, D. (2006). The impact of microwave synthesis on drug discovery. Nature Reviews Drug Discovery, 5(1), 51 – 63. doi:10.1038/nrd1926
Lang, H. J. and Merino, D. N. (1993). Selection process for capital projects. Hoboken, NJ: John Wiley & Sons, Inc.
Liberatore, M. J. and Nydick, R. L. (1993). Decision technology: Modeling, software, and applications. New York: John Wiley and Sons, Inc.
Madu, C. N., Kuei, C. and Madu, I. E. (2002). A hierarchic metric approach for integration of green issues in manufacturing: A paper recycling application, Journal of Environmental Management, 64(3), 261 – 272. doi: 10.1006/jema.2001.0498
Marx, V. (2004). Riding the microwave, Chemical Engineering News, 82(50), 14 – 19. doi: http://dx.doi.org/10.1021/cen-v082n050.p014
Melón, M. G., Beltran, P. A. and Cruz, M. C. G. (2008). An AHP-based evaluation procedure for Innovative Educational Projects: A face-to-face vs. computer-mediated case study, Omega, 36, 754-765. doi: http://dx.doi.org/10.1016/j.omega.2006.01.005
Mustafa, M. A. and Al-Bahar, J. F. (1991). Project risk assessment using the analytic hierarchy process, IEEE Transactions on Engineering Management, 38(1), 46 – 52. doi: 10.1109/17.65759
Pecchia, L., Martin, J. L., Ragozzino, A., Vanzanella, C., Scognamiglio, A., Mirarchi, L., & Morgan, S. P. (2013). User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner, BMC Medical Informatics and Decision Making, 13(2), 1-11. doi:10.1186/1472-6947-13-2
Partovi, F. Y. (2007). An analytical model of process choice in the chemical industry, International Journal of Production Economics, 105(1), 213-227. doi:10.1016/j.ijpe.2006.03.006
Prasad, K. & Chakraborty, S. (2013). A quality function deployment-based model for materials selection. Materials & Design, 49, 525-535. doi: 10.1016/j.matdes.2013.01.035
Reid, R. P. and Hermann, M. R. (1989). QFD . . . The Voice of the Customer. The Journal for Quality and Participation, 12(4), 44 – 46.
Saaty, T. L. (1980). Analytic Hierarchy Process. New York: The McGraw-Hill Companies.
Saaty, T. L. (2001). The Analytic Hierarchy Process: Planning, priority setting, resource allocation. Pittsburgh, PA: RWS Publication.
Saaty T. L. (2011). Aligning the measurement of tangibles with intangibles and not the converse. International Journal of the Analytic Hierarchy Process, 3(1), 79-87. doi: http://dx.doi.org/10.13033/ijahp.v3i1.91
Tam, M. C. Y. and Tummala, V. M. R. (2001). An application of the AHP in vendor selection of a telecommunications system, Omega, 29(2), 171-182. doi: 10.1016/S0305-0483(00)00039-6
Tam, C. M., Tong, T. K. L. and Chiu, G. W. C. (2006). Comparing non-structural fuzzy decision support system and analytical hierarchy process in decision-making for construction problems, European Journal of Operational Research, 174(2),1317-1324. doi: 10.1016/j.ejor.2005.03.013
Vaidya, O. S. and Kumar, S. (2006). Analytic hierarchy process: An overview of applications, European Journal of operational research, 169(1), 1-29. doi: 10.1016/j.ejor.2004.04.028
Wasserman, G. S. (1993). On how to prioritize design requirements during the QFD planning process, IIE Transactions, 25(3), 59-65. doi:10.1080/07408179308964291
Wathey, B., Tierney, J., Lidstörm P. and Westman, J. (2002). The impact of microwave-assisted organic chemistry on drug discovery, Drug Discovery Today, 7(6), 373 – 380. doi: http://dx.doi.org/10.1016/s1359-6446(02)02178-5
Zakarian, A. and Kusiak, A. (1999). Forming teams: An analytic approach, IIE Transactions, 31(1), 85-97. doi:10.1080/07408179908969808
Copyright of all articles published in IJAHP is transferred to Creative Decisions Foundation (CDF). However, the author(s) reserve the following:
- All proprietary rights other than copyright, such as patent rights.
- The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In case of whole articles, such third parties must obtain permission from CDF as well. However, CDF may grant rights with respect to journal issues as a whole.
- The right to use all or parts of this article in future works of their own, such as lectures, press releases, reviews, textbooks, or reprint books.
- The authors affirm that the article has been neither copyrighted nor published, that it is not being submitted for publication elsewhere, and that if the work is officially sponsored, it has been released for open publication.
The only exception to the statements in the paragraph above is the following: If an article published in IJAHP contains copyrighted material, such as a teaching case, as an appendix, then the copyright (and all commercial rights) of such material remains with the original copyright holder.
CDF will receive permission for publication of copyrighted material in IJAHP. This permission is not transferable to third parties. Permission to make electronic and paper copies of part or all of the articles, including all computer files that are linked to the articles, for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage.
This permission does not apply to previously copyrighted material, such as teaching cases. In paper copies of the article, the copyright notice and the title of the publication and its date should be visible. To copy otherwise is permitted provided that a per-copy fee is paid.
To republish, to post on servers, or redistribute to lists requires that you post a link to the IJAHP article, which is available in open access delivery mode. Do not upload the article itself.
Authors are permitted to present a talk, based on a paper submitted to or accepted by IJAHP, at a conference where the paper would not be published in a copyrighted publication either before or after the conference and where the author did not assign copyright to the conference or related publisher.