Analytic Hierarchy Process Based on the Magnitude of Z-Numbers

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 25, 2023
Nik Muhammad Farhan Hakim Nik Badrul Alam Ku Muhammad Naim Ku Khalif Nor Izzati Jaini

Abstract

The Analytic Hierarchy Process (AHP) is a powerful multi-criteria and multi-alternative decision-making model, which assists decision-makers in giving preferences using pairwise comparison matrices. The development of the AHP using fuzzy numbers has received attention from many researchers due to the ability of fuzzy numbers to handle vagueness and uncertainty. The integration of the AHP with fuzzy Z-numbers has improved the model since the reliability of the decision-makers is considered, in which the judgment is followed by a degree of certainty or sureness. Most of the existing decision-making models based on Z-numbers transform the Z-numbers into regular fuzzy numbers by integrating the reliability parts into the restriction parts, causing a significant loss of information. Hence, this study develops the AHP based on the magnitude of Z-numbers, which is used to represent the criteria weights. A numerical example of criteria ranking for the prioritization of public services for digitalization is implemented to illustrate the proposed AHP model.

How to Cite

Nik Badrul Alam, N. M. F. H., Ku Khalif, K. M. N., & Jaini, N. I. (2023). Analytic Hierarchy Process Based on the Magnitude of Z-Numbers. International Journal of the Analytic Hierarchy Process, 15(1). https://doi.org/10.13033/ijahp.v15i1.1063

Downloads

Download data is not yet available.
Abstract 246 | PDF Downloads 297

##plugins.themes.bootstrap3.article.details##

Keywords

AHP, Magnitude, Z-Number, Criteria Ranking

References
Abbasbandy, S., & Hajjari, T. (2009). A new approach for ranking of trapezoidal fuzzy numbers. Computers and Mathematics with Applications, 57(3), 413–419. Doi: https://doi.org/10.1016/j.camwa.2008.10.090

Abdullahi, M., Ahmad, T., & Ramachandran, V. (2020). A review on some arithmetic concepts of Z-number and its application to real-world problems. International Journal of Information Technology and Decision Making, 19(4), 1091–1122. Doi: https://doi.org/10.1142/S0219622020300025

Aliev, R. A. (2013). Fundamentals of the Fuzzy Logic-Based Generalized Theory of Decisions. Springer-Verlag.

Aliev, R. A., Alizadeh, A. V. V., & Huseynov, O. H. H. (2015). The arithmetic of discrete Z-numbers. Information Sciences, 290(C), 134–155. Doi: https://doi.org/10.1016/j.ins.2014.08.024

Aliev, R. A., Guirimov, B. G., Huseynov, O. H., & Aliyev, R. R. (2021). A consistency-driven approach to construction of Z-number-valued pairwise comparison matrices. Iranian Journal of Fuzzy Systems, 18(4), 37–49.

Azadeh, A., Saberi, M., Atashbar, N. Z., Chang, E., & Pazhoheshfar, P. (2013). Z-AHP: A Z-number extension of fuzzy analytical hierarchy process. IEEE International Conference on Digital Ecosystems and Technologies, 141–147. Doi: https://doi.org/10.1109/DEST.2013.6611344

Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. Doi: https://doi.org/10.1016/0165-0114(85)90090-9

Buckley, James J., Feuring, T., & Hayashi, Y. (2001). Fuzzy hierarchical analysis revisited. European Journal of Operational Research, 129(1), 48–64. Doi: https://doi.org/10.1016/S0377-2217(99)00405-1

Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. Doi: https://doi.org/10.1016/0377-2217(95)00300-2

Emrouznejad, A., & Ho, W. (2017). Fuzzy Analytic Hierarchy Process. Chapman and Hall/CRC. Doi: https://doi.org/10.1201/9781315369884

Farzam, M., Kermani, M. A., Allahviranloo, T., & Belaghi, M. J. S. (2021). A new method for ranking of Z-numbers based on magnitude value. In Progress in Intelligent Decision Science. IDS 2020. Advances in Intelligent Systems and Computing (pp. 841–850). Springer, Cham. Doi: https://doi.org/10.1007/978-3-030-66501-2_68

Gardashova, L. A. (2019). Z-number based TOPSIS method in multi-criteria decision making. In Advances in Intelligent Systems and Computing (Vol. 896). Springer International Publishing. Doi: https://doi.org/10.1007/978-3-030-04164-9_10
Kang, B., Wei, D., Li, Y., & Deng, Y. (2012). A method of converting Z-number to classical fuzzy number. Journal of Information and Computational Science, 9(3), 703–709.

Leung, L. C., & Cao, D. (2000). On consistency and ranking of alternatives in fuzzy AHP. European Journal of Operational Research, 124(1), 102–113. https://doi.org/10.1016/S0377-2217(99)00118-6

Perote-Peña, J., & Piggins, A. (2007). Strategy-proof fuzzy aggregation rules. Journal of Mathematical Economics, 43(5), 564–580. Doi: https://doi.org/10.1016/j.jmateco.2006.09.010

Ruoning, X., & Xiaoyan, Z. (1992). Extensions of the analytic hierarchy process in fuzzy environment. Fuzzy Sets and Systems, 52(3), 251–257. Doi: https://doi.org/10.1016/0165-0114(92)90236-W

Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.

Sergi, D., & Sari, U. I. (2021). Prioritization of public services for digitalization using fuzzy Z-AHP and fuzzy Z-WASPAS. Complex & Intelligent Systems, 7(2), 841–856. Doi: https://doi.org/10.1007/s40747-020-00239-z

Shen, K. W., & Wang, J. Q. (2018). Z-VIKOR method based on a new comprehensive weighted distance measure of Z-number and its application. IEEE Transactions on Fuzzy Systems, 26(6), 3232–3245. Doi: https://doi.org/10.1109/TFUZZ.2018.2816581

Tüysüz, N., & Kahraman, C. (2020). CODAS method using Z-fuzzy numbers. Journal of Intelligent & Fuzzy Systems, 38(2), 1649–1662. Doi: https://doi.org/10.3233/JIFS-182733

Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. Doi: https://doi.org/10.1016/j.ejor.2004.04.028

van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1–3), 229–241. Doi: https://doi.org/10.1016/S0165-0114(83)80082-7

Voskoglou, M. (2019). Application of fuzzy numbers to assessment processes. In K.-P. Mehdi (Ed.), Encyclopedia of Information Science and Technology (pp. 407–420). IGI Global. Doi: https://doi.org/10.4018/978-1-5225-7368-5.ch030

Wang, Y. M., Elhag, T. M. S., & Hua, Z. (2006). A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process. Fuzzy Sets and Systems, 157(23), 3055–3071. Doi: https://doi.org/10.1016/j.fss.2006.08.010

Wang, Y. M., Luo, Y., & Hua, Z. (2008). On the extent analysis method for fuzzy AHP and its applications. European Journal of Operational Research, 186(2), 735–747. Doi: https://doi.org/10.1016/j.ejor.2007.01.050

Xu, R. (2000). Fuzzy least-squares priority method in the analytic hierarchy process. Fuzzy Sets and Systems, 112(3), 395–404. Doi: https://doi.org/10.1016/S0165-0114(97)00376-X

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. Doi: https://doi.org/10.1016/S0019-9958(65)90241-X

Zadeh, L. A. (2011). A Note on Z-numbers. Information Sciences, 181(14), 2923–2932. Doi: https://doi.org/10.1016/j.ins.2011.02.022

Zeinalova, L. M. (2018). A Z-number valued analytical hierarchy process. Chemical Technology, Control and Management, 2018(3), 88–94. Doi: https://doi.org/https://doi.org/10.34920/2018.4-5.88-94

Zhang, X., Ma, W., & Chen, L. (2014). New similarity of triangular fuzzy number and its application. The Scientific World Journal, 2014. Doi: https://doi.org/10.1155/2014/215047

Section
Special Topic Articles