MAINTENANCE STRATEGY SELECTION OF HYDRAULIC SYSTEMS IN THE STEEL INDUSTRY: A DESIGN SCIENCE RESEARCH APPROACH

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 11, 2025
Nuno M. M. Torre
Valerio A. P. Salomon
Fernando A. S. Marins

Abstract

The steel industry is a major global player in the world economy and significantly contributes to a country’s development. Maintenance is indispensable for the productivity of steel industry assets. The growing use of high-precision operations in these organizations makes hydraulic systems a critical concern. Multi-criteria decision-making (MCDM) methods can facilitate decision-making, particularly with decisions about the best maintenance policies/strategies to be employed. The Analytic Hierarchy Process (AHP) is a consolidated and appropriate method for dealing with multiple factors and uncertainty. This research proposes a model to support decision-making for selecting a maintenance strategy for hydraulic systems in steel plants. The development of this model followed the Design Science Research (DSR) methodology, which has five stages. The main scientific contribution of this research is to demonstrate that the AHP allows a landscape with a qualitative approach regarding the maintenance strategy selection of hydraulic systems in the steel industry, which enables the development of a hierarchical framework that incorporates four maintenance strategies, criteria, and sub-criteria identified in the current literature. The criteria of cost, safety, reliability, quality, and feasibility were examined to determine the best maintenance strategy to be applied. Predictive maintenance was selected as the priority strategy, while safety was the criterion with the highest added value. The sensitivity analysis confirmed the robustness of the framework, showing that classifications remained stable even when the weights of the criteria varied.

How to Cite

M. M. Torre, N., A. P. Salomon, V., & A. S. Marins, F. (2025). MAINTENANCE STRATEGY SELECTION OF HYDRAULIC SYSTEMS IN THE STEEL INDUSTRY: A DESIGN SCIENCE RESEARCH APPROACH. International Journal of the Analytic Hierarchy Process, 17(3). https://doi.org/10.13033/ijahp.v17i3.1304

Downloads

Download data is not yet available.
Abstract 58 | PDF Downloads 37

##plugins.themes.bootstrap3.article.details##

Keywords

steel industry, maintenance, hydraulic systems, design science research, framework, AHP

References
Abbas, M., & Shafiee, M. (2020). An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures, 71, 102718.
https://doi.org/10.1016/j.marstruc.2020.102718

Abdulgader, F. S., Eid, R., & Rouyendegh, B. D. (2018). Development of decision support model for selecting a maintenance plan using a fuzzy mcdm approach: a theoretical framework. Applied Computational Intelligence and Soft Computing, 1–14. https://doi.org/10.1155/2018/9346945

Avakh Darestani, S., Palizban, T. and Imannezhad, R. (2022). Maintenance strategy selection: a combined goal programming approach and BWM-TOPSIS for paper production industry. Journal of Quality in Maintenance Engineering, 28(1), 14–36. https://doi.org/10.1108/JQME-03-2019-0022

Bajic, B., Suzic, N., Simeunovic, N., Moraca, S., & Rikalovic, A. (2020). Real-time data analytics edge computing application for industry 4.0: The mahalanobis-taguchi approach. International Journal of Industrial Engineering and Management, 11(3), 146–156. http://doi.org/10.24867/IJIEM-2020-3-26

Bauer, M. W., Gaskell, G. (2017). Pesquisa qualitativa com texto, imagem e som: um manual prático. Editora Vozes Limitada.

Behnia, F., Ahmadabadi, H. Z., Schuelke-Leech, B. A., & Mirhassani, M. (2023). Developing a fuzzy optimized model for selecting a maintenance strategy in the paper industry: An integrated FGP-ANP-FMEA approach. Expert Systems with Applications, 232, 120899. https://doi.org/10.1016/j.eswa.2023.120899

Canco, I., Kruja, D., & Iancu, T. (2021). AHP, a reliable method for quality decision making: A case study in business. Sustainability, 13(24), 13932. https://doi.org/10.3390/ su132413932

Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394–402. https://doi.org/10.1016/j.ress.2017.09.017

Carpitella, S., Mzougui, I., Benítez, J., Carpitella, F., Certa, A., Izquierdo, J., & La Cascia, M. (2021). A risk evaluation framework for the best maintenance strategy: The case of a marine salt manufacture firm. Reliability Engineering & System Safety, 205, 107265. https://doi.org/10.1016/j.ress.2020.107265

Carstensen, A. K., & Bernhard, J. (2019). Design science research–a powerful tool for improving methods in engineering education research. European Journal of Engineering Education, 44(1-2), 85–102. https://doi.org/10.1080/03043797.2018.1498459

Chaudhuri, A., Gerlich, H. A., Jayaram, J., Ghadge, A., Shack, J., Brix, B. H., ... & Ulriksen, N. (2021). Selecting spare parts suitable for additive manufacturing: a design science approach. Production Planning & Control, 32(8), 670–687. https://doi.org/10.1080/09537287.2020.1751890

Chen, L., Feng, H., & Xie, Z. (2016). Generalized thermodynamic optimization for iron and steel production processes: Theoretical exploration and application cases. Entropy, 18(10), 353. https://doi.org/10.3390/e18100353

Dai, J., Tang, J., Huang, S., & Wang, Y. (2019). Signal-based intelligent hydraulic fault diagnosis methods: Review and prospects. Chinese Journal of Mechanical Engineering, 32(1), 75. https://doi.org/10.1186/s10033-019-0388-9

Depczyński, R., Secka, J., Cheba, K., D’Alessandro, C., & Szopik-Depczyńska, K. (2023). Decision-making approach in sustainability assessment in steel manufacturing companies—systematic literature review. Sustainability, 15(15), 11614. https://doi.org/10.3390/su151511614

Di Bona, G., Cesarotti, V., Arcese, G., & Gallo, T. (2021). Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy. Procedia Computer Science, 180, 424–429. https://doi.org/10.1016/j.procs.2021.01.258

Dindorf, R., & Wos, P. (2022). A case study of a hydraulic servo drive flexibly connected to a boom manipulator excited by the cyclic impact force generated by a hydraulic rock breaker. IEEE Access, 10, 7734-7752. https://doi.org/10.1109/ACCESS.2022.3143257
Dresch, A., Lacerda, D. P., Antunes Jr, J. A. V., Dresch, A., Lacerda, D. P., & Antunes, J. A. V. (2015). Design science research. Springer International Publishing.

Ge, Y., Xiao, M., Yang, Z., Zhang, L., Hu, Z., & Feng, D. (2017). An integrated logarithmic fuzzy preference programming based methodology for optimum maintenance strategies selection. Applied Soft Computing, 60, 591–601. https://doi.org/10.1016/j.asoc.2017.07.021

Goecks, L. S., Souza, M. D., Librelato, T. P., & Trento, L. R. (2021). Design Science Research in practice: review of applications in Industrial Engineering. Gestão & Produção, 28(4), e5811. https://doi.org/10.1590/1806-9649-2021v28e5811

He, Y., Han, X., Gu, C., & Chen, Z. (2018). Cost-oriented predictive maintenance based on mission reliability state for cyber manufacturing systems. Advances in Mechanical Engineering, 10(1), 1687814017751467. https://doi.org/10.1177/1687814017751467

International Organization for Standardization. (2022). Hydraulic fluid power — General rules and safety requirements for systems and their components (ISO Standard No. 4413:2022)

International Organization for Standardization. (2015). Quality management systems — Requirements (ISO Standard No. 9001:2015).

Jocelyn, S., Chinniah, Y., & Ouali, M. S. (2016). Contribution of dynamic experience feedback to the quantitative estimation of risks for preventing accidents: A proposed methodology for machinery safety. Safety Science, 88, 64–75. https://doi.org/10.1016/j.ssci.2016.04.024

Kannan, A. K., Balamurugan, S. A. A., & Sasikala, S. (2021). A customized metaheuristic approaches for improving supplier selection in intelligent decision making. IEEE Access, 9, 56228-56239. https://doi.org/10.1109/ACCESS.2021.3071454

Khan, K., Sohaib, M., Rashid, A., Ali, S., Akbar, H., Basit, A., & Ahmad. T. (2021). Recent trends and challenges in predictive maintenance of aircraft’s engine and hydraulic system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 1–17. https://doi.org/10.1007/s40430-021-03121-2

Khan, S., Farnsworth, M., McWilliam, R., & Erkoyuncu, J. (2020). On the requirements of digital twin-driven autonomous maintenance. Annual Reviews in Control, 50, 13–28. https://doi.org/10.1016/j.arcontrol.2020.08.003

Kuechler, B., & Vaishnavi, V. (2008). On theory development in design science research: anatomy of a research project. European Journal of Information Systems, 17(5), 489–504. https://doi.org/10.1057/ejis.2008.40

Kuechler, W., & Vaishnavi, V. (2012). A framework for theory development in design science research: multiple perspectives. Journal of the Association for Information systems, 13(6), 3. https://doi.org/10.17705/1jais.00300

Lacerda, D. P., Dresch, A., Proença, A., & Antunes Júnior, J. A. V. (2013). Design Science Research: A research method to production engineering. Gestão & produção, 20, 741–761. https://doi.org/10.1590/S0104-530X2013005000014

Lopes, I. D. S., Figueiredo, M., & Sá, V. (2020). Criticality evaluation to support maintenance management of manufacturing systems. International Journal of Industrial Engineering and Management, 11(1), 3–18. https://doi.org/10.24867/IJIEM-2020-1-248

Mattioli, J., Perico, P., & Robic, P. O. (2020, September). Improve total production maintenance with artificial intelligence. In 2020 Third International Conference on Artificial Intelligence for Industries (AI4I) (pp. 56-59). IEEE. https://doi.org/10.1109/AI4I49448.2020.00019

Manson, N. J. (2006). Is operations research really research?. Orion, 22(2), 155–180.

Mirhosseini, M., & Keynia, F. (2021). Asset management and maintenance programming for power distribution systems: A review. IET Generation, Transmission & Distribution, 15(16), 2287–2297. https://doi.org/10.1049/gtd2.12177

Noura, H. N., Chu, T. Allal Z., Salman, O., & Chahine, K. (2024). A comparative study of ensemble methods and multi-output classifiers for predictive maintenance of hydraulic systems. Results in Engineering, 24, 102900. https://doi.org/10.1016/j.rineng.2024.102900

Özcan, E., Yumuşak, R., & Eren, T. (2021). A novel approach to optimize the maintenance strategies: a case in the hydroelectric power plant. Eksploatacja i Niezawodność, 23(2), 324–337. http://doi.org/10.17531/ein.2021.2.12

Ohta, R. (2018). Selection of industrial maintenance strategy: Classical AHP and fuzzy AHP applications. International Journal of the Analytic Hierarchy Process, 10(2), 254–265. https://doi.org/10.13033/ijahp.v10i2.551

Patil, A., Soni, G., Prakash, A. and Karwasra, K. (2022). Maintenance strategy selection: a comprehensive review of current paradigms and solution approaches. International Journal of Quality & Reliability Management, 39(3), 675–703. https://doi.org/10.1108/IJQRM-04-2021-0105

Qin, W., Zhuang, Z., Liu, Y., & Xu, J. (2022), Sustainable service oriented equipment maintenance management of steel enterprises using a two-stage optimization approach. Robotics and Computer-Integrated Manufacturing, 75, 102311. https://doi.org/10.1016/j.rcim.2021.102311

Rashidi, M., Ghodrat, M., Samali, B., Kendall, B., & Zhang, C. (2017). Remedial modelling of steel bridges through application of analytical hierarchy process (AHP). Applied Sciences, 7(2), 168. https://doi.org/10.3390/app7020168

Rahimi, M., Sadinejad, S., & Khalili-Damghani, K. (2014). Selecting the most appropriate maintenance strategies using fuzzy analytic network process: a case study of Saipa vehicle industry. Decision Science Letters, 3(2), 237–242. https://doi.org/10.5267/j.dsl.2013.10.003

Rios, M. P., Caiado, R. G. G., Vignon, Y. R., Corseuil, E. T., & Santos, P. I. N. (2024). Optimising Maintenance Planning and Integrity in Offshore Facilities Using Machine Learning and Design Science: A Predictive Approach. Applied Sciences, 14(23), 10902. https://doi.org/10.3390/app142310902

Sarda, K., Acernese, A., Nolè, V., Manfredi, L., Greco, L., Glielmo, L., & Del Vecchio, C. (2021). A multi-step anomaly detection strategy based on robust distances for the steel industry. IEEE Access, 9, 53827–53837. https://doi.org/10.1109/ACCESS.2021.3070659

Saaty, T. L. (1974). Measuring the fuzziness of sets. Journal of Cybernetics, 4(4), 53–61. https://doi.org/10.1080/01969727408546075

Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I

Saaty, T. L., & Peniwati, K. (2013). Group decision making: drawing out and reconciling differences. Pittsburgh: RWS Publications.

Saaty, T. L., & Vargas, L. G. (2001). How to make a decision. In T. L. Saaty & L. G. Vargas (Eds.), Models, methods, concepts & applications of the analytic hierarchy process (1–25). Springer.

Shahin, A., Aminsabouri, N., & Kianfar, K. (2018). Developing a decision making grid for determining proactive maintenance tactics: A case study in the steel industry. Journal of Manufacturing Technology Management, 29(8), 1296–1315. https://doi.org/10.1108/JMTM-12-2017-0273

Shukla, K., Nefti-Meziani, S., & Davis, S. (2022). A heuristic approach on predictive maintenance techniques: Limitations and scope. Advances in Mechanical Engineering, 14(6), 16878132221101009. https://doi.org/10.1177/1687813222110

Singh, S., Berndt, C. C., Singh Raman, R. K., Singh, H., & Ang, A. S. M. (2023). Applications and developments of thermal spray coatings for the iron and steel industry. Materials, 16(2), 516. https://doi.org/10.3390/ma16020516

Siwiec, D. & Pacana, A. (2021). Method of improve the level of product quality. Production Engineering Archives, 27, 1-7. https://doi.org/10.30657/pea.2021.27.1

Takeda, H., Veerkamp, P., & Yoshikawa, H. (1990). Modeling design process. AI Magazine, 11(4), 37. https://doi.org/10.1609/aimag.v11i4.855

Torre, N. M. D. M., Brandalise, N., & Bonamigo, A. (2023). Economic feasibility analysis for insourcing hydraulic maintenance services using the Monte Carlo method. Gestão & Produção, 30, e1623. https://doi.org/10.1590/1806-9649-2023v30e1623

Torre, N. M. D. M., & Bonamigo, A. (2024). Action research of lean 4.0 application to the maintenance of hydraulic systems in steel industry. Journal of Quality in Maintenance Engineering, 30(2), 341–366. https://doi.org/10.1108/JQME-06-2023-0058

Van Aken, J., Chandrasekaran, A., & Halman, J. (2016). Conducting and publishing design science research: Inaugural essay of the design science department of the Journal of Operations Management. Journal of Operations Management, 47, 1–8. https://doi.org/10.1016/j.jom.2016.06.004

Verma, A., Khan, S. D., Maiti, J., & Krishna, O. B. (2014). Identifying patterns of safety related incidents in a steel plant using association rule mining of incident investigation reports. Safety Science, 70, 89–98. https://doi.org/10.1016/j.ssci.2014.05.007

Yang, C., Duan, R., Lin, Y., & Chen, L. (2024). A maintenance strategy for hydraulic systems based on generalized stochastic Petri nets under epistemic uncertainty. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(2), 99. https://doi.org/10.1007/s40430-023-04672-2

Zhao, J., Gao, C., & Tang, T. (2022). A review of sustainable maintenance strategies for single component and multicomponent equipment. Sustainability, 14(5), 2992. https://doi.org/10.3390/su14052992

Section
Articles