UNVEILING KEY CRITERIA FOR EFFECTIVE LEADERSHIP: A MULTI-CRITERIA DECISION-MAKING FRAMEWORK USING TOPIC MODELING AND ANALYTIC HIERARCHY PROCESS (AHP)

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Aug 12, 2025
Yong-Jae Lee

Abstract

In this study, we introduce a novel framework for enhancing leadership decision-making through the integration of topic modeling techniques and the Analytic Hierarchy Process (AHP). Despite the critical role of decision-making in leadership effectiveness, existing literature lacks robust methodologies for selecting and applying key decision-making criteria. Addressing this gap, we employed topic modeling, specifically Term Frequency–Inverse Document Frequency (TF-IDF) and Latent Dirichlet Allocation (LDA), to analyze 178 leadership articles published from 2015–2023. Our analysis identified three empirically derived criteria essential for effective leadership decisions: feasibility, reliability, and adaptability & flexibility. We implemented these criteria using the AHP methodology, demonstrating their practical application through a case study of employee selection. The findings reveal that adaptability & flexibility emerged as the most critical criterion (weight=0.56), followed by reliability (0.32) and feasibility (0.12). This integrated approach transforms theoretical leadership constructs into a practical decision-making framework that enhances objectivity, reduces cognitive bias, and improves strategic outcomes. The study contributes to leadership theory by providing a systematic, transparent methodology for evaluating decision alternatives in increasingly complex organizational environments, while offering practitioners a replicable tool that can be calibrated to specific contextual demands.

How to Cite

Lee, Y.-J. (2025). UNVEILING KEY CRITERIA FOR EFFECTIVE LEADERSHIP: A MULTI-CRITERIA DECISION-MAKING FRAMEWORK USING TOPIC MODELING AND ANALYTIC HIERARCHY PROCESS (AHP). International Journal of the Analytic Hierarchy Process, 17(2). https://doi.org/10.13033/ijahp.v17i2.1209

Downloads

Download data is not yet available.
Abstract 557 | PDF Downloads 408

##plugins.themes.bootstrap3.article.details##

Keywords

Big Data, Data Mining, Decision-Making, Perception, Leadership, Elementary schools, Teacher, Principal, Leadership complex situations, AHP decision making

References
Alsalminy, B. M. K., & Omrane, A. (2023). The effects of emotional intelligence on leadership effectiveness (A prospective case study of three industrial companies in Iraq). Journal of Positive Psychology and Wellbeing, 7(2), 988-1006.

Alshamsi, A. M., El-Kassabi, H., Serhani, M. A., & Bouhaddioui, C. (2023). A multi-criteria decision-making (MCDM) approach for data-driven distance learning recommendations. Education and Information Technologies, 28(8), 10421-10458. https://doi.org/10.1007/s10639-023-11589-9

Anderson, L. A., & Anderson, D. (2010). The change leader's roadmap: How to navigate your organization's transformation. John Wiley & Sons.

Avery, G. (2005). Leadership for sustainable futures: Achieving success in a competitive world. Edward Elgar Publishing. https://doi.org/10.4337/9781845425494.00009

Baby, S. (2013). AHP modeling for multicriteria decision-making and to optimise strategies for protecting coastal landscape resources. International Journal of Innovation, Management and Technology, 4(2), 218. https://doi.org/10.7763/ijimt.2013.v4.395

Behie, S. W., Pasman, H. J., Khan, F. I., Shell, K., Alarfaj, A., El-Kady, A. H., & Hernandez, M. (2023). Leadership 4.0: The changing landscape of industry management in the smart digital era. Process Safety and Environmental Protection, 172, 317-328. https://doi.org/10.1016/j.psep.2023.02.014

Boggs, G. R., & McPhail, C. J. (2016). Practical leadership in community colleges: Navigating today's challenges. John Wiley & Sons.

Choi, J., Lee, J., Yoon, J., Jang, S., Kim, J., & Choi, S. (2022). A two-stage deep learning-based system for patent citation recommendation. Scientometrics, 127(11), 6615-6636. https://doi.org/10.1007/s11192-022-04301-0

Coffey, G. (2009). A systems approach to leadership: How to create sustained high performance in a complex and uncertain environment. Springer Science & Business Media.

Day, D. V., & Lance, C. E. (2004). Understanding the development of leadership complexity through latent growth modeling. In Leader development for transforming organizations (pp. 61-90). Psychology Press.

Dumulescu, D., & Muţiu, A. I. (2021). Academic leadership in the time of COVID-19—Experiences and perspectives. Frontiers in Psychology, 12, 648344. https://doi.org/10.3389/fpsyg.2021.648344

Eisenbach, R., Watson, K., & Pillai, R. (1999). Transformational leadership in the context of organizational change. Journal of Organizational Change Management, 12(2), 80-89. https://doi.org/10.1108/09534819910263631

Ejimabo, N. O. (2015). An approach to understanding leadership decision making in organization. European Scientific Journal, 11(11), 1-24. https://doi.org/10.1007/s11192-022-04301-0

Ghaffari, M., Aliahmadi, A., Khalkhali, A., Zakeri, A., Daim, T. U., & Yalcin, H. (2023). Topic-based technology mapping using patent data analysis: A case study of vehicle tires. Technological Forecasting and Social Change, 193, 122576. https://doi.org/10.1016/j.techfore.2023.122576

Greiner, L. E., & Cummings, T. G. (2009). Dynamic strategy-making: A real-time approach for the 21st century leader. John Wiley & Sons.

Hallo, L., Nguyen, T., Gorod, A., & Tran, P. (2020). Effectiveness of leadership decision-making in complex systems. Systems, 8(1), 5. https://doi.org/10.3390/systems8010005

Heifetz, R. A., Grashow, A., & Linsky, M. (2009). The practice of adaptive leadership: Tools and tactics for changing your organization and the world. Harvard Business Press.

Huang, L., Hou, Z., Fang, Y., Liu, J., & Shi, T. (2023). Evolution of CCUS technologies using LDA topic model and Derwent patent data. Energies, 16(6), 2556. https://doi.org/10.3390/en16062556

Kaklauskas, A., & Kaklauskas, A. (2015). Intelligent decision support systems. Biometric and Intelligent Decision Making Support, 31-85. http://dx.doi.org/10.1007/978-3-319-13659-2_2

Karneli, O. (2023). The role of adhocratic leadership in facing the changing business environment. Journal of Contemporary Administration and Management (ADMAN), 1(2), 77-83. http://dx.doi.org/10.61100/adman.v1i2.26

Kilag, O. K. T., Abendan, C. F. K., Uy, F. T., Calledo, M. F. S., Diano Jr, F. M., & Morales Jr, N. M. (2023). Assessing the impact of principal’s instructional leadership, school level, and effectiveness in educational institutions. Science and Education, 4(5), 902-917.

Korobkin, D., Saveliev, M., Vereschak, G., & Fomenkov, S. (2022). The building a patent landscape for technological forecasting tasks. International Russian Automation Conference. http://dx.doi.org/10.1007/978-3-031-22311-2_31

Kvalnes, Ø., & Øverenget, E. (2012). Ethical navigation in leadership training. Etikk i praksis-Nordic Journal of Applied Ethics, 1, 58-71. https://doi.org/10.5324/eip.v6i1.1778

London, M. (2023). Causes and consequences of adaptive leadership: A model of leaders’ rapid responses to unexpected events. Psychology of Leaders and Leadership, 26(1), 22. https://psycnet.apa.org/doi/10.1037/mgr0000136

Ma, R., Zhang, Y., Chen, J., & Wen, H. (2022). Patent research front mining of GaN semiconductor based on the LDA model. SHS Web of Conferences, 140, 01019. https://doi.org/10.1051/shsconf/202214001019

Mastilović, J., Kukolj, D., Kevrešan, Ž., Ostojić, G., Kovač, R., Đerić, M., & Samek, D. U. (2023). Emerging perspectives of blockchains in food supply chain traceability based on patent analysis. Foods, 12(5), 1036. https://doi.org/10.3390/foods12051036

Millet, I., & Wedley, W. C. (2002). Modelling risk and uncertainty with the analytic hierarchy process. Journal of Multi‐Criteria Decision Analysis, 11(2), 97-107. https://doi.org/10.1002/mcda.319

Mızrak, F., & Culduz, M. (2023). Application of Analytic Hierarchy Process (AHP) in evaluating educational leadership theories for effective school management. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 10(4), 137-164.

Nguyen, P.-H. (2024). A data-driven MCDM approach-based spherical fuzzy sets for evaluating global augmented reality providers in education. IEEE Access, 13, 6102-6119. https://doi.org/10.1109/ACCESS.2024.3361320
Odu, G. (2019). Weighting methods for multi-criteria decision making technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449-1457. http://dx.doi.org/10.4314/jasem.v23i8.7

Palus, C. J., & Horth, D. M. (2002). The leader's edge: Six creative competencies for navigating complex challenges. John Wiley & Sons. https://doi.org/10.4314/jasem.v23i8.7

Ruben, B. D., De Lisi, R., & Gigliotti, R. A. (2023). A guide for leaders in higher education: Concepts, competencies, and tools. Taylor & Francis. https://doi.org/10.4324/9781003442769

Salicru, S. (2017). Leadership results: How to create adaptive leaders and high-performing organisations for an uncertain world. John Wiley & Sons.

Sharma, D., Sridhar, S., & Claudio, D. (2020). Comparison of AHP-TOPSIS and AHP-AHP methods in multi-criteria decision-making problems. International Journal of Industrial and Systems Engineering, 34(2), 203-223. http://dx.doi.org/10.1504/IJISE.2020.10026954

Silge, J., & Robinson, D. (2016). tidytext: Text mining and analysis using tidy data principles in R. Journal of Open Source Software, 1(3), 37. https://doi.org/10.21105/joss.00037

Sokhansanj, B. A., & Rosen, G. L. (2022). Predicting institution outcomes for inter partes review (IPR) proceedings at the United States patent trial & appeal board by deep learning of patent owner preliminary response briefs. Applied Sciences, 12(7), 3656. https://doi.org/10.3390/app12073656

Strehmel, P., Tamir, E., Fonsén, E., Heikkinen, K.-M., Heikonen, L., & Ahtiainen, R. (2023). Conclusion: Lessons learnt for crises leadership and organizational resilience. In E. Fonsén, R. Ahtiainen, K.-M. Heikkinen, L. Heikonen, P. Strehmel, & E. Tamir (Eds.), Early childhood education leadership in times of crisis: International studies during the COVID-19 pandemic, (pp. 247-254). Verlag Barbara Budrich. https:/doi.org/10/2307/jj.2430379.17

Tavana, M., Kennedy, D. T., & Mohebbi, B. (1997). An applied study using the analytic hierarchy process to translate common verbal phrases to numerical probabilities. Journal of Behavioral Decision Making, 10(2), 133-150.

Tian, C., Zhang, J., Liu, D., Wang, Q., & Lin, S. (2022). Technological topic analysis of standard-essential patents based on the improved Latent Dirichlet Allocation (LDA) model. Technology Analysis & Strategic Management, 36(2), 1-16.
http://dx.doi.org/10.1080/09537325.2022.2130039

Uy, F., Kilag, O. K., Abendan, C. F., Macapobre, K., Cañizares, M. C., & Yray, F. (2023). Application of adaptive crisis management theory: The dynamics of leadership in times of crisis. Excellencia: International Multi-disciplinary Journal of Education (2994-9521), 1(5), 159-170.

Valencia-García, R., Paredes-Valverde, M. A., del Pilar Salas-Zárate, M., & Alor-Hernández, G. (2018). Exploring intelligent decision support systems: current state and new trends. Springer.
Vroom, V. H., & Yetton, P. W. (1973). Leadership and decision-making. Administrative Science Quarterly, 18(4), 321-335.
Wickham, H. (2014). Tidy data. Journal of Statistical Software, 14(10), 1-23. http://dx.doi.org/10.18637/jss.v059.i10
Yaman, A., Sartono, B., Soleh, A. M., Indrawati, A., & Kartika, Y. A. (2022). Automated multi-label classification on fertilizer-themed patent cocuments in Indonesia. DESIDOC Journal of Library & Information Technology, 42(4), 218-226. http://dx.doi.org/10.14429/djlit.42.4.17733
Zheng, Z., Kang, B.-R., Yuan, Q.-T., Zhou, Y.-C., Lu, X.-Z., & Lin, J.-R. (2022). Text mining-based patent analysis for automated rule checking in AEC. arXiv preprint ar, Xiv:2212.05891. https://doi.org/10.48550/arXiv.2212.05891
Section
Articles